Il Centro Allerta Tsunami e l’esercitazione NEAMWave17

la-meteo.it – previsioni in real time

Il 2 novembre 2017 si è svolta in Italia l’esercitazione internazionale sul rischio tsunami NEAMWave17, che tra il 31 ottobre e il 3 novembre ha interessato la regione denominata NEAM (Atlantico nord-orientale, Mediterraneo, Mar di Marmara e Mar Nero). L’esercitazione, la terza organizzata dalla International Oceanographic Commission (IOC) dell’Unesco, aveva l’obiettivo di testare le capacità operative del sistema di allertamento maremoti nella regione, di coinvolgere gli Stati membri e soprattutto di migliorare la capacità di affrontare il rischio tsunami.

L’esercitazione prevedeva quattro differenti scenari simulati, che hanno interessato, in giorni diversi, tre aree del Mediterraneo e un’area dell’Atlantico nord-orientale. Sono stati coinvolti quattro Tsunami Service Provider: il CENALT (CENtre d’ALerte aux Tsunamis, Francia), il NOA (National Observatory of Athens, Grecia), il CAT (Centro Allerta Tsunami dell’Istituto Nazionale di Geofisica e Vulcanologia, Italia), il KOERI (Kandilli Observatory and Earthquake Research Institute, Turchia), e l’IPMA (Instituto Português do Mar e da Atmosfera, Portogallo), candidato come Tsunami Service Provider per il Portogallo. Il CAT-INGV è stato di recente accreditato come Tsunami Service Provider per il Mediterraneo.

Per il CAT e il NOA, quella del 2 novembre è stata la prima esercitazione congiunta, con uno scenario che ha interessato non solo i mari italiani ma l’intero Mediterraneo. La simulazione, che ha consentito di testare per la prima volta il Sistema italiano di Allertamento Maremoti (SiAM), si è basata su una ipotetica scossa di terremoto di magnitudo 8.5, con epicentro a sud dell’isola di Zante, nel segmento occidentale dell’Arco Ellenico. L’esercitazione prevedeva il coordinamento dei diversi attori del Sistema italiano di Allerta Maremoti, istituito ufficialmente nello scorso mese di giugno. L’analisi del potenziale tsunamigenico del terremoto simulato è stata effettuata dal Centro Allerta Tsunami dell’INGV, che ha anche effettuato in tempo reale il monitoraggio dei dati mareografici rilevati dall’Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), mentre il Dipartimento della Protezione Civile si è occupato delle procedure di valutazione e allertamento delle Sale Operative Regionali e di alcuni Comuni.

Simulazione della propagazione della prima onda di tsunami durante l'esercitazione NEAMWave17

Simulazione della propagazione dello tsunami durante l’esercitazione NEAMWave17. Le isolinee rappresentano i tempi di arrivo della prima onda di tsunami (legenda a destra)

Nel corso dell’esercitazione NEAMWave17, dopo una valutazione dei dati sull’ipotetico evento sismico, il Centro Allerta Tsunami ha emesso un’allerta WATCH (livello massimo) che, immediatamente rilanciata dal Dipartimento della Protezione Civile, ha inviato una serie di messaggi ai funzionari delle Sale Operative Regionali e ai sindaci di dodici amministrazioni comunali delle Regioni maggiormente interessate dallo scenario: Nova Siri, Policoro e Scansano Ionico in Basilicata; Soverato, Catanzaro e Rossano in Calabria; Lecce, Gallipoli e Castellaneta in Puglia, per segnalare la possibilità di un evento imminente, in grado di interessare le aree costiere.

In una situazione reale, il primo messaggio di allerta verrebbe emanato dal CAT in base ai soli parametri del terremoto quali la magnitudo, la distanza della sorgente sismica dalla costa e la profondità dell’ipocentro. Se, nei minuti successivi, l’analisi dei dati delle reti mareografiche del Mediterraneo evidenziasse delle anomalie del livello del mare, verrebbero diramati successivi messaggi di allerta. Nel caso in cui i dati non dovessero confermare l’arrivo dell’onda, l’allerta verrebbe cancellata.

Gli tsunami possono essere causati da terremoti, frane o eruzioni vulcaniche e sono generalmente formati da una serie di lunghe onde che si propagano in mare aperto a velocità di centinaia di chilometri orari e che possono inondare vaste aree dell’entroterra costiero (vedi video Tsunami).

Nel caso degli tsunami generati dai terremoti, che sono di gran lunga i più frequenti e gli unici attualmente monitorati dal CAT-INGV, l’altezza e l’energia delle onde sono proporzionali all’estensione e allo spostamento verticale della faglia sottomarina interessata. É certamente utile sapere che questo fenomeno in alcuni casi è preceduto da un ritiro del mare per decine di metri, che la propagazione di queste onde può durare per ore e che la prima onda ad abbattersi sulle coste non sempre è la più distruttiva.

Nello scenario di NEAMWave17, il terremoto avrebbe provocato uno tsunami in grado di colpire numerose località lungo le coste del Mediterraneo e in modo particolare le coste della Grecia Ionica, della Libia e quelle di Puglia, Basilicata, Calabria e Sicilia Sud-Orientale. In conseguenza dell’elevata velocità di propagazione dell’onda nelle profonde acque dello Ionio, il tempo di arrivo delle prime onde sulle coste italiane più vicine sarebbe stato di circa 20 minuti dal terremoto. L’area selezionata per la simulazione, il segmento occidentale dell’arco ellenico, è ben nota ai sismologi, coincide con un’importante zona di subduzione, e si caratterizza per l’elevata sismicità. In passato, terremoti avvenuti lungo la stessa struttura geologica hanno già dato luogo a imponenti tsunami, come quello verificatosi all’alba del 21 Luglio del 365 d.C. in una zona a sud-ovest di Creta.

In quel caso il terremoto, di magnitudo stimata superiore a 8, ha generato uno tsunami in grado di spazzare tutte le coste del Mediterraneo dall’Algeria alla Siria, distruggendo Alessandria d’Egitto, invadendo l’intero delta del Nilo e provocando gravi danni a Creta, Cipro, nella Grecia continentale, in Libia, nella Sicilia Orientale e persino nel Mar Adriatico (Stiros, 2001). Fenomeni di questo tipo si verificano con una certa frequenza anche nell’area del Mediterraneo, non sempre con proporzioni catastrofiche come quello del 365 d.C. ma non per questo innocui. Ad oggi il Catalogo degli Tsunami Euro-Mediterranei (EMTC), basato su fonti storiche, conta 290 eventi, tra cui il terribile tsunami che ha fatto seguito al terremoto di Reggio Calabria e Messina del 1908, causando migliaia di morti (Maramai, Brizuela e Graziani, 2014).

Ma non si tratta soltanto di eventi eccezionali accaduti in tempi lontani. Nei soli ultimi due anni il CAT-INGV ha monitorato cinque forti terremoti nel Mediterraneo, quattro dei quali hanno generato dei piccoli tsunami locali, inviando le prime allerte al Dipartimento della Protezione Civile in tempi compresi tra 9 e 12 minuti dal tempo origine dell’evento sismico.

Tempo origine (UTC) Regione Mag USGS Mag rapida  CAT Livello di allerta Tempo del  messaggio UTC (minuti dal tempo origine)

16/04/15

18:07

Crete (Greece)    6.4 6.4 Watch 18:16       (9’)

17/11/15

07:10

Ionian (Greece) 6.5 6.5 Advisory 07:22      (12’)

25/01/16

04:22

Gibraltar 6.5 6.5 Advisory 04:33      (11’)

12/6/17

12:28

Greece-Turkey 6.4 6.5 Advisory    12:38      (10’)
20/7/17

22:31

Turkey-Greece 6.6 6.8 Watch 22:41      (10’)

L’ultimo evento rilevato risale al 21 luglio 2017, quando un terremoto di magnitudo 6.7 avvenuto nell’arcipelago del Dodecaneso, e più precisamente nel tratto di mare prospiciente Kos (Grecia) e Bodrum (Turchia) ha generato uno tsunami relativamente piccolo, con onde che localmente hanno raggiunto la quota topografica di 1.5 metri rispetto al livello del mare (Yalçiner et al. 2017). In quell’occasione, in dieci minuti il Centro Allerta Tsunami aveva già calcolato i parametri del terremoto e lanciato la prima allerta, come descritto qui.

Uno degli obiettivi di questo tipo di esercitazioni consiste, per l’appunto, nel testare la creazione, l’invio e la ricezione dei messaggi di allerta da parte dei componenti del SiAM e degli Enti locali e, per quanto possibile, di simulare operativamente le azioni conseguenti, verificando anche i tempi necessari per le azioni di mitigazione dell’impatto sulle coste interessate. In quest’ottica, è stato istituito a livello internazionale lo Tsunami Awareness Day (Giornata della consapevolezza degli tsunami), che si tiene il 5 novembre 2017, in ricordo del grande tsunami che colpì il Giappone nel 1854.


Riferimenti bibliografici

Comunicato Stampa INGV del 3 novembre 2017

Maramai A., Brizuela B., Graziani L. (2014). The Euro-Mediterranean Tsunami Catalogue, Annals of Geophysics, 57, 4, S0435.

Stiros, S. C. (2001). The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. Journal of Structural Geology, 23(2), 545-562.

Yalçıner, A., Annunziato, A., Papadopoulos, G., Güney-Doğan, G., Gökhan-Güler, H., Eray- Cakir, T., Özer-Sözdinler, C., Ulutaş, E., Arikawa, T., Süzen, L., Kanoğlu, U., Güler, I., Probst, P., Synolakis, C. (2017). The 20th July 2017 (22:31 UTC) Bodrum-Kos Earthquake and Tsunami: Post Tsunami Field Survey Report, http://users.metu.edu.tr/yalciner/july-21-2017-tsunami-report/Report-Field-Survey-of-July- 20-2017-Bodrum-Kos-Tsunami.pdf.

Archiviato in:Informazione, INGV, Maremoti, Protezione Civile Tagged: appnews, arco ellenico, CAT, CAT-INGV, Centro Allerta Tsunami, DPC, Grecia, ICG, IOC, Ionio, ISPRA, maremoto, NEAMWave17, noa, SiAM, tsunami, UNESCO

Il Centro Allerta Tsunami e l’esercitazione NEAMWave17

www.la-meteo.it

la-meteo.it

Per le previsioni del tempo del mondo seleziona qui

Per le previsioni del tempo europee passa qui

Per le previsioni meteo nazionali clicca qua

Per le previsioni meteo regionali clicca qui

Per le previsioni meteo in TV clicca qui

Per le previsioni del tempo sui mari clicca qua

Per l’altezza della neve clicca qui

www.la-meteo.it

la-meteo.it

In meteorologia la previsione meteo consiste nell’uso della scienza e della tecnologia per prevedere la condizione del tempo in un tempo futuro ed in una prestabilita zona.
Ora per determinare le condizioni future si utilizzano di frequente modelli di previsione numerici. L’intervento umano è ancora richiesto per individuare il miglior modello di previsione sul quale fondare la previsione stessa.
Per di più il previsore deve tradurre i risultati dei modelli matematici in una predizione detagliata e semplice capibile dal pubblico non esperto

La forte potenza computazionale necessaria per risolvere le equazioni che descrivono l’atmosfera, l’errore implicato nel misurare le condizioni iniziali ed una comprensione incompleta dei eventi atmosferici causano che le previsioni siano meno precise quando aumenta l’intervallo di tempo della previsione.
Viceversa la previsione meteo diviene più affidabile allorché si avvicina l’evento.
L’uso della cosiddetta PREVISIONE DI ENSEMBLE e DEL CONSENSO tra i modelli aiuta a RIDURRE L’ERRORE e a determinare L’ESITO PIU’ PROBABILE.

Questo website utilizza esattamente questo metodo per avere LE MIGLIORI PREVISIONI DEL WEB.
Per questo motivo si confrontano le migliori previsioni della rete e i migliori modelli numerici.
Dalla loro comparazione è possibile ottenere un tasso di successo elevatissimo sino a 3 giorni di distanza.

Si calcola una efficacia delle previsioni

–FINO AL 98% A 1 GIORNO DI DISTANZA
–SINO AL 92% A 2 GIORNI DI DISTANZA
–SINO AL 84% A 3 GIORNI DI DISTANZA

LA METEO – CONFRONTA LE MIGLIORI PREVISIONI DEL WEBIl Centro Allerta Tsunami e l’esercitazione NEAMWave17

I commenti sono chiusi.